

WORKING PAPER

Foundations of Compounding Growth

How growth systems accelerate, stabilize, compound, and why they stall

Growth Systems Working Group: Jacco van der Kooij, Kevin Brown, Christopher Delegge, David Ellin, and Aaron Hill. This working paper reflects the collective thinking of the Growth Systems Working Group and will continue to evolve as the framework is tested and refined.

Version 1.0, February 18, 2026

Abstract: This working paper introduces growth loops as the fundamental building blocks of scalable growth systems. It models growth as the interaction of recurring feedback loops rather than a linear sequence of actions, explaining how loops behave, how they interact, why their sequencing determines whether growth compounds or stalls, and where AI has leverage as a recursive amplifier. The paper provides a shared systems language for diagnosing growth behavior, understanding structural failure modes for companies with \$100-300M in ARR, and defining Takeoff as a phase transition from effort-driven growth to self-reinforcing systems.

This working paper is intended for executives, operators, and investors responsible for designing, governing, or evaluating growth systems. It is not a playbook of tactics, but a systems framework for understanding why growth accelerates, stalls, or compounds over time.

Keywords: *Growth Systems, Growth Loops, Endogenous Reinforcement, Exogenous Inputs, Product-Led Growth (PLG), Human-Led Growth (HLG), Recursive Growth, AI Recursive Amplifier, Protective Loops, Accelerative Loops, Air-Gapped Loops, Direct-Connection Loops, Takeoff, Irreversible Time-Dominance, Word-of-Mouth (WoM), User Advocacy, Retention Loop, Expansion Loop, Education & Community Loops.*

Table of Contents:

1. **Growth Loop Characteristics:** Definitions and the Four Layers of the Stack.
2. **Growth Modes:** PLG, HLG, and the Role of Recursive AI.
3. **First-Order Loops:** The Five Fundamental Builders of Scale.
4. **The Operating Loop:** The Determinant of System Coherence.
5. **System Behavior:** The Invariant Sequence and The Wall companies hit.
6. **Takeoff:** Achieving Irreversible Time-Dominance.

Chapter 1. Growth Loop Definition and Structure

We define a growth loop as a self-reinforcing system in which outputs from growth activity feed back as inputs that create or influence future growth, without requiring proportional external input. A mechanism qualifies as a growth loop if it meets all three of the following conditions:

1. **Feedback Closure:** The output of the activity materially influences future inputs to the system. Growth produced in one cycle alters the conditions under which the next cycle operates.
2. **System-Level Impact:** Changes in the loop measurably alter overall growth behavior—such as growth rate, stability, or future capacity—rather than only improving local efficiency.
3. **Endogenous Reinforcement Potential:** Once activated, the loop can sustain or amplify itself through its own outputs, even if exogenous input is required to initiate it.

In contrast, activities that repeat without feeding back into future growth, such as campaigns, do not constitute growth loops. They are inputs to the system, not self-reinforcing structures within it. Across diagnostics, we consistently observe that when such activities stop, their effect on growth also stops.

With this definition in place, growth loops can be analyzed by their underlying characteristics: what powers them, how feedback propagates through the system, what they amplify, and what outcomes emerge over time. In the sections that follow, we use this definition as an analytic lens rather than as a claim about any specific tactic or company.

Figure 1. Growth loops operate by transforming system inputs into outputs that feed back into the system. Inputs may take many forms—such as usage, engagement, demand signals, or advocacy, depending on the growth motion and loop type.

1.1 Characteristics of Growth Loops

Underlying characteristics govern the behavior of a growth loop. These characteristics are hierarchical, organized into layers, each describing a distinct system property and answering a different diagnostic question. In practice, leaders diagnose growth loops top-down, from outcomes to foundations, but design and improve them bottom-up, from foundations to outcomes.

- **Foundational Layer:** What powers growth
- **Systemic Layer:** What does it amplify
- **Physical Layer:** How does it work
- **Outcome Layer:** What does it deliver

Together, they form a stack that defines the operating structure and physics of any growth loop.

1.1.1 Foundational Layer: What Powers Growth

Every growth loop needs power. That power can come from outside the system or from inside it.

Externally powered loops (Exogenous)

- The need for constant effort
- Growth stops when the effort stops

Externally powered loops only work when someone keeps pushing them. If you stop spending time, money, or energy, the growth slows down or stops. For example, sending emails or running ads only works as long as you continue investing; when you stop, the results stop too. Externally powered (exogenous) loops are often necessary early to create momentum, but they are not sufficient for durable compounding without endogenous reinforcement.

Internally powered loops (Endogenous)

- Can keep going on their own
- Use their own results as fuel

Internally powered loops generate their own energy once they start. What comes out of the system helps power the next round of growth. For example, when people enjoy an application, they tell their peers about it, increasing the likelihood that their peers will sign up as well. The growth keeps going even without extra effort.

1.1.2 Systemic Layer: What Does It Amplify?

This layer explains how the system uses the growth it receives. Some loops help you protect the growth you already have. Other loops help you accelerate growth.

Protective loops

- Prevent decay
- Preserve accumulated impact

Protective loops don't make growth faster, but they stop it from falling apart. They help the system retain what it has already built. An example of a protective loop is retention, measured as Gross Revenue Retention (GRR). When emphasized too early, protective loops suppress acceleration—allocating energy toward preserving a base that hasn't yet been built.

A common example of “too early” occurs when churn reduction is emphasized before the system has converged on a clear ideal customer profile (ICP) and the impact those customers seek. At this stage, churn is more a signal of misfit than of failure. Optimizing retention prematurely allocates energy toward preserving heterogeneous customers, suppressing the system's ability to learn which users experience durable value and which should naturally fall out. In such cases, protective loops preserve ambiguity rather than stability.

Accelerative loops

- Increase growth velocity
- Steepen the growth curve

Accelerative loops make growth speed up. When something works, it helps the next round work even better. An example of an accelerative loop is expansion; its impact, combined with retention, is reflected in Net Revenue Retention (NRR).

1.1.3 Physical Layer: How Does It Work?

The Physical Layer describes how outputs become inputs, or how the feedback signal travels through the system.

Direct-connection loops

- Cause and effect are easy to see
- The system can read the signal

In direct-connection loops, the system sees exactly what happened. When someone does something, the system records it right away. This makes it easy to count, measure, and react

quickly. For example, when someone opens an email and a tracking pixel records it, the system knows exactly what happened and when.

Air-gapped loops

- Cause and result are harder to see
- People pass the signal, not the system

In air-gapped loops, the system does not directly see what happened. The signal moves through people, not computers.

What happened is real, but the system has to guess or learn about it later. For example, two people talking over dinner may share a recommendation. That conversation matters, but the system cannot track it or measure it directly. Air-gapped does not mean unmeasurable; it means the signal is indirect, delayed, and must be inferred rather than directly observed. In practice, such inference often relies on secondary indicators—such as self-reported referral sources, peer mentions surfaced in sales conversations, changes in inbound demand following exposure, or correlations between community activity and downstream conversion.

1.1.4 Outcome Layer: What Emerges Over Time

The Outcome Layer describes what can be observed over time when a growth loop operates within a system. These outcomes are not design choices or intentions; they emerge from the interaction of the loop's driving force, systemic role, and physical realization. This layer explains what you can see happening after a growth loop runs for a while. These results are not planned in a step-by-step manner. They happen because of how the system is set up and how it runs.

Supportive outcomes

- Make things easier
- Help things move more smoothly

Supportive outcomes remove small problems that slow things down. They help more people get through the system, but they do not create growth on their own. They make other growth loops work better, without changing how fast the system grows. For example, better instructions can help more people use a product correctly, but they don't bring in new customers on their own.

Stabilizing outcomes

- Stop things from getting worse
- Keep what you already have

Stabilizing outcomes helps a system maintain its progress. They don't make growth faster, but they stop it from shrinking. It allows the system to keep going without losing what it has already

built. For example, if customers stay longer, the business doesn't lose money even if fewer new customers arrive.

Accelerative outcomes

- Make growth faster
- Help success repeat itself

Accelerative outcomes increase growth velocity by improving the efficiency of an existing loop. When something works, it keeps working, each time a little faster. For example, improving conversion rates or shortening sales cycles increases growth without changing the system's underlying capacity.

Compounding outcomes

- Make future growth easier
- Let growth build on itself

Compounding outcomes occur when growth changes the system in ways that increase its future capacity. Each round expands the system's capacity, making subsequent growth easier with less incremental effort. For example, when existing customers spend more over time, the revenue base and product footprint grow, creating more surface area for future expansion without relying solely on acquiring new customers.

Accelerative outcomes change the rate of growth; compounding outcomes change the state of the system, increasing future growth capacity.

A useful distinction is whether removing a growth driver causes the system to return to its prior baseline (accelerative) or whether the system remains larger and easier to grow than before (compounding).

These differences in outcomes are not incidental; they reflect the distinct functional roles that growth loops play within the system.

1.2 Functional Roles of Growth Loops

Growth loops do not all produce the same kind of change. At the system level, loops differ in what they change, not in how they are implemented. Broadly, growth loops fall into three functional roles:

Transition loops

Reposition actors or signals within the system. They change readiness, credibility, or decision context, enabling progression that was previously not possible. Their effect is not increased volume, but movement into a different behavioral regime or re-entry into the system at an earlier structural point with different properties.

Acceleration loops

Increase flow or velocity within an existing state. They amplify throughput by increasing awareness, inflow, or speed, but do not alter readiness or system structure. Acceleration makes what is already possible happen faster, without unlocking new system behavior.

Capacity loops

Change what the system can sustain or compound over time. They alter durability and future potential by reducing leakage, stabilizing what has been built, or increasing the system's ability to generate future growth from existing structure. Capacity determines whether growth remains fragile, becomes durable, or compounds.

Growth stalls when loops are misapplied across roles, when acceleration is used to compensate for missing transitions, or when compounding is attempted before sufficient capacity exists. Correct sequencing requires understanding not just how loops operate, but also what kinds of changes they can produce.

Chapter 2. Growth Modes

Growth modes describe how a growth system operates when certain loop characteristics dominate. In practice, growth modes emerge from how feedback travels through the system—whether signals are captured directly by software or carried indirectly through people.

Modern growth architectures therefore operate in two primary modes: Product-Led Growth (PLG) and Human-Led Growth (HLG). These modes are governed by different physics, measurement approaches, and amplification strategies, yet are designed to reinforce one another within the same system.

2.1 Product-Led Growth (PLG)

PLG primarily operates through direct connection loops. User actions, such as clicks, usage, invitations, or upgrades, are captured directly by the product and immediately fed back into the system. Because cause and effect are tightly coupled, signals are observable in real time and can be measured precisely. This makes PLG fast to tune, mechanically optimizable, and well-suited for automation, experimentation, and AI-driven optimization.

In PLG systems, adaptation occurs quickly because the system can see what works as it happens.

2.2 Human-Led Growth (HLG)

HLG operates primarily through air-gapped loops. Signals travel through people rather than systems—via conversations, recommendations, reputation, and trust. There is no direct signal linking advocacy to new demand. The loop only closes when someone asks a peer about their experience, and that experience influences a decision. As a result, outcomes are probabilistic, delayed, and inferred rather than directly observed.

The air gap should not be seen as a weakness, but rather a loop with different characteristics. In this case, the signal carries much more weight, more credibility. But it scales differently and operates at a very different velocity. HLG is indirectly shaped by creating conditions that foster authentic advocacy.

When leaders demand real-time attribution from air-gapped loops, they can degrade signal quality by incentivizing performative behavior over authentic advocacy.

2.3 Recursive Growth

To understand recursive growth, it helps to start with a real-world example.

A company may have tens of thousands of users across thousands of customers. This user base forms an advocacy basin. Over time, a small fraction of these users are asked a simple question: "What are you using?" When they answer, they advocate for a solution based on their own experience.

The system then observes which of these advocacy moments leads to an inbound request. It learns which users and contexts correlate with demand and adjusts which users are activated, when, and how through targeted campaigns. As a result, engagement becomes more selective and precise with each cycle.

What's important is that this interaction passes across an air gap that cannot be directly observed or measured. This HLG loop appears in many forms: conversations at events, LinkedIn posts, peer recommendations, and community interactions.

Recursion amplifies what a system already is.

This is where recursive growth comes in. It begins by observing the outcomes of these interactions and working backward.

In practice, this recursion shows up in places like product analytics informing onboarding flows, customer success signals reshaping expansion plays, marketing models refining audience selection, and sales prioritization adjusting based on which conversations convert into qualified demand. In each case, downstream outcomes reshape upstream decisions.

The system looks for patterns that consistently correlate with downstream demand, such as role, tenure, product usage depth, language used, network position, timing, and context. Over time, the system learns:

- Who becomes a credible advocate
- When advocacy converts into inquiry
- Under what conditions does the air gap close?

These insights are fed back into the system to increase probability, not to force behavior. Campaigns, education, and prompts are selectively applied to high-signal users, while broader market activity increases awareness among audiences most likely to ask.

Nothing is hard-wired. No user is instructed to broadcast. Instead, the system adapts so that the right people are present, prepared, and visible at the right moments, increasing the likelihood that advocacy and inquiry intersect. That is recursive growth: not creating demand directly, but systematically increasing the odds that demand and advocacy meet, at scale, over time.

2.4 PLG vs HLG Under Recursion

Recursive growth operates as a second-order adaptive process. It observes outcomes, identifies which signals matter, and adjusts the system to amplify those signals in future cycles. Under recursion, the inherent characteristics of PLG and HLG are not neutralized or averaged; they are amplified. In PLG systems, recursion accelerates what already moves quickly, compressing feedback cycles and increasing velocity. In HLG systems, recursion deepens what already creates credibility, increasing signal quality and trust over time.

PLG under recursion

Because PLG is defined by direct-connection loops, recursion amplifies signals with four properties: measurability, velocity, repeatability, and applicability.

- **Measurable signals** are captured directly by the system. User actions such as clicks, usage patterns, and feature adoption generate explicit, machine-readable signals. In a recursive system, these signals are continuously reinforced.
- **Velocity signals** compress the time between action, insight, and adjustment. Short feedback cycles become even shorter, accelerating what already moves quickly.
- **Repeatable signals** produce consistent outcomes under similar conditions. Successful paths, flows, and behaviors are reinforced while inconsistent ones are discarded, causing the system to converge on high-performing patterns.
- **Applicable signals** can be translated directly into system changes. Insights are acted on through product design, onboarding, pricing, or distribution mechanics, allowing learning to convert rapidly into execution.

As a result, recursion amplifies velocity, local optimization, automation leverage, and winner-take-all dynamics in PLG systems.

HLG under recursion

Because HLG is defined by air-gapped loops, recursion amplifies signals that are credible, contextual, and selective.

- **Credible signals** are trusted because they come from lived experience rather than repetition. A recommendation matters because the person giving it has real context, no obvious incentive, and something at stake in being right.
- **Contextual signals** derive their power from timing, setting, and relevance. The same recommendation can be decisive in the right moment and meaningless in another.
- **Selective signals** retain their impact by being limited in scope. Overuse destroys trust. Selectivity preserves signal strength by concentrating amplification among people whose voices carry weight.

As a result, recursion amplifies the quality of advocates, narrative precision, trust accumulation, and selective amplification in HLG systems.

2.5 AI as a Recursive Amplifier

AI does not introduce a new growth mode, and it does not replace PLG or HLG. Its role is to accelerate recursion—shortening the distance between outcomes and learning.

- **In PLG systems**, AI accelerates recursion by shortening feedback cycles. It detects usage patterns, optimizes flows, and automates experimentation. Fast systems become faster and more precise as outcomes are observed, learned from, and reintegrated into the system.
- **In HLG systems**, AI helps surface high-quality signals from noisy, air-gapped environments. It identifies which experiences, narratives, and contexts are most likely to lead to credible advocacy, improving signal quality without forcing scale. Surfacing signals, however, do not close the air gap. The advocacy itself still occurs outside the system, through human judgment, trust, and context, and cannot be directly instrumented or controlled.

AI improves inference around air-gapped outcomes, not execution. It learns from downstream results and works backward to refine who is activated, when, and how, while the point of action remains human-mediated. In this way, the air gap is narrowed rather than eliminated.

AI does not eliminate the air gap, nor replace human judgment at the point of advocacy. It operates above the feedback layer, strengthening both direct and air-gapped loops by accelerating learning and adaptation.

AI has its highest leverage in the recursive layer.

It amplifies the health of existing loops, but cannot compensate for missing, broken, or mis-sequenced ones. As a force multiplier, it synthesizes signals across the system to continuously *reallocate finite resources toward higher-yield paths*.

It can detect when previously reliable proxies, such as firmographic qualification, no longer correlate with long-term expansion and instead drive higher cost-to-serve.

By identifying these shifts, the system can recommend structural adjustments—excluding certain leads, refining prioritization, and redirecting effort toward customers with greater expansion potential. Applied continuously, this recursive optimization compounds the impact of finite resources by reducing waste and improving alignment over time.

Chapter 3. First- and Second-Order Growth Loops

Growth systems consist of multiple feedback loops, but not all are equally important. We distinguish between first-order and second-order growth loops.

- **First-order growth loops** are the fundamental, system-level loops that directly determine how growth is created, sustained, and compounded. They define core growth behaviors such as generating new demand, converting usage into opportunity, retaining customers, and expanding customer impact. These loops shape the overall trajectory of the growth system.
- **Second-order growth loops** are derivative mechanisms that extend, express, or optimize first-order loops. They can influence performance locally and matter operationally, but they do not alter the underlying growth physics of the system. Examples include partner programs, SEO, marketplaces, ecosystems, or sales-efficiency initiatives. These mechanisms leverage first-order loops rather than replacing or redefining them.

The set of growth loops described in this chapter is intentionally selective. The goal is not to catalog every possible growth tactic or channel, but to define the foundational building blocks that govern system-level growth behavior. Many commonly discussed “growth loops” are second-order expressions of these first-order loops.

First-order loops define how growth works. Second-order loops determine how effectively those mechanics are applied.

For executives, this distinction is critical: sustainable growth does not come from discovering the next growth hack, but from strengthening the health and sequencing of first-order loops.

3.1 First Order Growth Loops

Growth is modeled using five dominant, first-order growth loops that capture the system-level behavior of a GTM engine.

- **Word-of-Mouth** (WoM): accelerates growth by generating new demand
- **Education**: enables progression by reducing friction and uncertainty
- **User Advocacy** (Referral): accelerates growth through usage-driven signals
- **Retention**: protects growth by preventing decay
- **Expansion**: compounds growth by increasing the impact customers achieve

While both Word-of-Mouth and User Advocacy originate with users, they serve different system functions: Word-of-Mouth creates new demand. At the same time, Advocacy improves the quality and credibility of demand through usage-derived signals.

Each loop contributes to growth in a distinct way, depending on its role in the system and its underlying characteristics, such as whether it is accelerative or protective, and whether it is powered exogenously or endogenously.

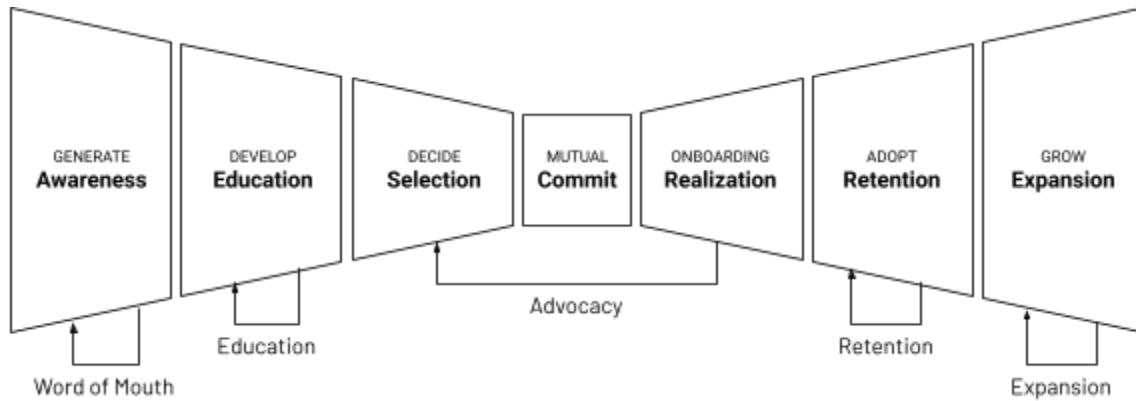


Figure 3.1. Structural representation of the Bowtie growth system and first-order growth loops (conceptual model).

3.1.1 Word-of-Mouth Loop

The Word of Mouth loop describes how growth is generated when existing users, observers, or participants trigger interest among new prospects.

- *Virality* describes the rate at which this happens
- *Word-of-Mouth* describes the mechanism itself.

This loop operates primarily among prospects or a broader audience that may not yet have direct experience with the product. As a result, it is driven more by popularity and social signals than by established credibility. People share what is visible, trending, or widely discussed—even when firsthand experience is limited.

Word-of-Mouth produces the fastest acceleration in early and mid growth stages. It is powerful but often fragile and short-lived. Without reinforcement from education, advocacy, retention, or expansion loops, Word-of-Mouth decays quickly and fails to convert awareness into durable growth.

3.1.2 Education Loop

The Education loop enables progression by reducing uncertainty wherever actors move toward a commitment or action. In this loop, the customer is in learning mode, and the system's role is to help them understand what the product is, whether it is relevant, how it works, and whether it will succeed in their specific context.

The primary output of the Education loop is readiness for action—measured as buying readiness among prospects and adoption progress among existing users. When education is effective, interest turns into informed confidence, making it easier for prospects to move into the next stage and make a decision.

The Education loop can operate through different mechanisms, Nurture and Community, and closes through learning signals that allow the system to improve its approach to reducing uncertainty over time.

Nurture (Exogenous Education Mechanism)

Nurture is an exogenous education mechanism within the Education loop. It reduces uncertainty and friction by providing structured inputs such as content, programs, workshops, demos, and human guidance.

Nurture does not self-propel as a mechanism.

Its outputs do not reinforce the Nurture system itself, and it requires continuous external input to operate. When that input stops, the mechanism decays. For this reason, **Nurture is not a self-closing growth loop**, but an exogenous mechanism within the Education loop.

However, nurture reliably changes the human state. Educated individuals often share what they have learned, triggering other first-order loops, such as Word of Mouth or Advocacy. In these cases, propagation occurs through human agency, not through the Nurture mechanism itself. In this way, Nurture supports the Education loop by improving progression efficiency and seeding downstream loops, without functioning as a self-closing loop.

Community (Endogenous Education Loop)

Unlike Nurture, which is a linear mechanism that decays without continuous external input, Community represents the endogenization of education.

When participants become the teachers, education compounds.

In a Community loop, individuals learn by observing, sharing, questioning, and validating each other's experiences. Knowledge spreads through peer reinforcement, context, and credibility, allowing education to continue even when direct company input declines.

The Community loop closes when participation generates more participation. As individuals learn and contribute, the shared knowledge base strengthens, attracting more engagement and improving the relevance and usefulness of future interactions. In this way, education becomes self-reinforcing.

Community changes the company's role from primary educator to facilitator. The system's task is not to provide every answer, but to create the conditions under which learning compounds through interaction.

When healthy, the Community loop reduces dependence on exogenous Nurture, improves the efficiency of progression, and increases the durability of the Education loop by allowing learning to scale through people rather than programs.

3.1.3 Advocacy Loop

The Advocacy loop is an endogenous accelerative loop that grows by converting product usage into credible demand signals. In this loop, satisfied users share their firsthand experience, producing usage-derived signals that generate new pipeline or demand and feed back into growth.

Unlike Word-of-Mouth, which is driven by popularity and visibility among prospects, Advocacy is driven by credibility that emerges from real usage. It operates among existing users who have direct experience with the product. Because the signal is grounded in lived experience, it carries higher trust and is more likely to convert.

Once activated, the Advocacy loop produces durable acceleration. Usage creates usage-derived signals; those signals establish credibility and trust; trust generates new demand; and that demand creates more users. Growth feeds directly back into growth. This loop is often a defining engine of AI-native and product-led companies, where real usage becomes the primary source of trusted demand.

Advocacy converts usage into trust, and trust into growth.

3.1.4 Retention Loop

The Retention loop is an endogenous loop that protects growth by preserving the impact that has already been created. In this loop, existing customers continue to use and renew the product, preventing the growth previously generated from decaying.

Retention does not create new growth, but it prevents negative compounding. Without retention, all other growth loops leak. Gross Revenue Retention (GRR) never exceeds 100%, yet it stabilizes the system by preventing past growth from being lost.

This loop operates among customers who have already adopted the product. Its role is to maintain engagement, satisfaction, and the continuity of impact, ensuring the system remains intact over time.

By reducing churn and preserving the installed base, the Retention loop turns growth from fragile into durable. It creates the stable foundation on which accelerative and compounding loops can operate effectively.

Retention does not make growth faster; it prevents growth from disappearing.

3.1.5 Expansion Loop

The Expansion loop is endogenous and accelerative. It compounds growth by increasing the impact existing customers achieve over time. In this loop, customers deepen their usage, add users, adopt additional use cases, or expand their investment, turning the installed base into a source of ongoing growth.

Expansion does not merely add revenue; it funds future growth capacity. Because impact increases within the existing customer base, expansion reduces reliance on constant new acquisition. Net Revenue Retention (NRR) can exceed 100% when expansion outpaces churn, reflecting the combined effect of retention and expansion—but NRR is an outcome, not the loop itself.

The expansion loop operates among customers who have already adopted the product and are achieving impact. Its role is to translate that impact into deeper engagement and higher lifetime contribution.


The Expansion loop is the primary engine of long-term compounding and is essential for scaling durable growth, particularly as companies move from roughly \$100M toward \$1B and beyond. By allowing growth to build on itself, expansion turns scale into an advantage.

3.2 The Operating Loop - The Human Closure Loop

While First-order loops generate growth, the Operating Loop determines whether that growth can be sustained as organizations scale. It counteracts entropy by ensuring that learning travels across functions rather than remaining trapped in silos.

We propose the Operating Loop as the coordinating mechanism that translates customer signals into system-level adaptation across acquisition, retention, and expansion. In practice, organizations lacking such a loop exhibit delayed feedback, local optimization, and eventual throughput collapse as scale increases.

When learning does not flow across functions—when customer success insights fail to inform marketing, or marketing optimizes volume while sales struggles with qualification—the Operating Loop remains open and growth leaks. Growth may still occur, but it does not compound.

Figure 3.2 The Operating Loop as a System Multiplier. Analysis of 50+ GTM diagnostics showing the Operating Loop as the strongest determinant of system performance—ranking as the #1 enabler when aligned and the #1 inhibitor when absent.

When the Operating Loop is closed, execution insights travel across teams through shared language, cadence, and operating norms. The organization behaves as a single system rather than a collection of functions, allowing improvements in one area to reinforce progress elsewhere rather than being undone by friction.

Every system drifts toward entropy; sustained growth requires humans to close feedback loops actively.

Across 50+ SaaS-native GTM diagnostics, the Operating Loop emerged as the single strongest determinant of system performance. When aligned, it acts as a powerful enabler of compounding growth; when misaligned, it becomes the strongest inhibitor. This binary effect reflects operating coherence: learning either reinforces the system or friction negates progress.

Closing the Operating Loop requires three non-negotiable standards across the customer journey:

- **Uniform Methodology:** executing the same playbook to ensure consistent inputs
- **Common Language:** using shared terminology to reduce friction and speed decisions
- **Standardized Data:** measuring success against a single source of truth

These are not cultural preferences or management styles. They are the structural requirements for sustaining compounding growth.

3.3 Second-Order Growth Loops

First-order loops generate energy in the system. Second-order loops provide leverage. They do not create growth. They amplify it. Second-order loops sit on top of a first-order loop and increase its reach, speed, or efficiency. Think of them as mechanical advantages applied to an already-moving system. To control growth, leadership must treat these mechanisms as multipliers, not generators.

- **First-Order Loops (Generators):** Create force in the system, e.g., a user advocating for the product.
- **Second-Order Loops (Amplifiers)** Reduce friction or increase torque on that force, e.g., a partner program that scales advocacy.

This distinction matters because most “growth hacks” aren’t growth at all. They’re second-order optimizations bolted onto an existing loop, quietly assuming that the loop underneath is already working. Here are a few examples and what they actually amplify.

- **Partner Ecosystems → Amplifies Advocacy**
A partner program is not a standalone growth engine; it is a lever for the Advocacy Loop. If the product does not generate delight and advocacy on its own, partners will not risk their reputation to sell it. The partner program simply scales the existing advocacy.

- **SEO & Content Strategy → Amplifies Education**

SEO is a distribution lever for the Education Loop. It increases the number of prospects entering the loop, but if the underlying mechanics of education (Nurture/Community) are broken, ranking #1 on Google only wastes effort.

- **Pricing & Packaging → Amplifies Expansion**

Packaging is a lever for the Expansion Loop. Tiered pricing reduces the friction of upselling, but it cannot create the value that drives the upsell.

This distinction leads to a non-negotiable mathematical truth: You cannot amplify zero.

Executives often try to bolt on second-order loops to fix stalled growth. This fails because amplifiers multiply the output of first-order loops; they do not replace them.

- Exponential Growth = Strong Core × Second-Order Loops
- Accelerated Failure = Broken Core × Second-Order Loops

First-order loops determine whether you grow. Second-order loops determine how fast and how efficiently that growth occurs.

Chapter 4. System-Level Growth Behavior

Growth loops do not operate in isolation. They form systems. And the behavior of those systems over time depends not just on which loops are present, but on the order in which they become dominant.

Growth loop behavior describes the effect a loop has on the system's trajectory over time. A single loop may exhibit different behaviors depending on how feedback propagates and how it is embedded in the broader system. These behaviors are not properties of loops in isolation. They emerge from the interaction between loop design, feedback physics, and system context, and together determine whether growth merely continues, accelerates temporarily, or compounds durably.

Some loops improve flow by reducing friction and smoothing conversion without creating momentum on their own. Other loops protect growth by preventing negative compounding and preserving the installed base. Accelerative loops increase growth velocity by tightening feedback cycles. Compounding loops increase future growth capacity by adding net new growth from existing customers, allowing each cycle to build on the last.

4.1 The Invariant Direction of Growth Systems

Across diagnostics, we observe a consistent ordering in how recurring-revenue growth systems evolve under scale pressure. We propose that this ordering, Acceleration, followed by Stability, followed by Compounding, is structurally invariant for systems in which growth is produced through coordinated acquisition, retention, and expansion.

Acceleration → Stability → Compounding

This sequence reflects structural constraints, not preference or strategy.

- **Accelerative loops create motion** by increasing growth velocity through tighter feedback cycles and early momentum.
- **Protective loops establish stability** by ensuring that what is being compounded is mechanically and economically sound, preventing product or business issues from being amplified.
- **Compounding loops expand capacity**, accelerating growth over time as each cycle builds on a larger base.

Companies may enter this sequence at different points depending on product architecture and market context. What does not change is the order in which constraints must be resolved. This order exists because growth systems obey simple structural limits:

- You cannot compound what you cannot retain.
- You cannot retain what users do not value.
- You should not compound what has not been mechanically and economically stabilized.

As a result, growth systems naturally evolve from motion to containment to amplification. When companies attempt to bypass this sequence by compounding before stabilization, or accelerating on a leaking or inefficient base, the probability of stalling increases sharply.

What appears to be a market problem is often a sequencing problem.

4.2 Growth Loop by Stage

Growth loops do not contribute equally at every stage of a company's evolution. As companies scale, the dominant growth loops shift in response to market saturation, customer behavior, and system constraints. Understanding which loops matter at each stage explains why growth accelerates, stalls, or becomes bought.

At early stages, growth systems optimize for acceleration. At later stages, they must optimize for durability and compounding. Companies that fail to transition from one dominant loop set to the next consistently hit the same wall, regardless of market, product, or talent. Growth stalls not because loops stopped working, but because the right loops are applied at the wrong stage.

Growth loops are often present long before they become dominant. A loop becomes dominant when it exerts the greatest influence on the system's rate, stability, or capacity, meaning changes in that loop produce outsized effects on overall growth.

The dominant loop is the one that, if weakened, immediately slows or reverses growth, even if all other loops remain intact.

Loops that are merely present may function, but changes to them do not materially alter the growth trajectory.

4.2.1 Early Stage Growth (<\$10M)

At an early stage, growth is driven primarily by accelerative acquisition loops.

Dominant Loops: Word-of-Mouth and Education (Nurture Mechanism).

System Behavior: Growth is exploratory and fragile. Word-of-Mouth creates rapid acceleration driven by novelty or social signal, while Nurture supports conversion by reducing friction.

Retention and Expansion exist, but the small installed base limits their impact.

Risk: Growth depends heavily on external input and early momentum. Without reinforcement from deeper loops, this acceleration fades quickly as the novelty wears off.

4.2.2 Scalable Growth (\$10-100M)

As the customer base grows, endogenous acceleration becomes possible.

Dominant loops: User Advocacy, Word-of-Mouth, and Retention (emerging).

System Behavior: Usage begins to generate demand. The shift from Word-of-Mouth (buzz) to User Advocacy (proof) stabilizes the acquisition engine. Retention begins to stabilize the base, allowing accelerative loops to compound more consistently. Growth can scale, but durability is not yet guaranteed.

Risk: Over-reliance on acquisition loops masks weakening retention or advocacy signals. Companies often mistake high velocity for high durability.

4.2.3 Durable Growth (\$100M-\$1B)

At this stage, growth must shift from acceleration to durable compounding.

Dominant loops: Retention, Expansion, and User Advocacy.

System Behavior: Growth is sustained by stable feedback loops that resist decay at scale. Acquisition, retention, and expansion are mechanically sound, and negative feedback is detected early enough to prevent systemic failure. The organization can grow without collapsing, but compounding still depends on active human orchestration. Leaders, managers, and frontline teams continuously interpret signals, adjust priorities, and reinforce execution discipline through the Operating Loop.

Observed Pattern: Many unicorns stall in this range ("The Wall") when accelerative loops weaken, and expansion or retention fail to take over.

4.2.4 Autonomous Growth (\$1B+)

At this scale, growth depends on orchestrated, self-sustaining loops.

Dominant Loops: Retention, Expansion, and User Advocacy.

System Behavior: Growth is driven primarily by endogenous feedback loops that operate with minimal human intervention. Customer signals are captured, interpreted, and reinvested automatically through product behavior, data systems, and operational workflows, allowing expansion, advocacy, and retention to reinforce one another without proportional increases in coordination cost.

Observed Pattern: Customer actions, usage, expansion, advocacy, and renewal directly trigger subsequent growth activity through embedded system feedback. As a result, growth accelerates while organizational load remains relatively flat.

Table 4.1 Dominating growth loops by growth stage (illustrative schematic).

Growth Stage*	What dominates	Explanation
<\$10M Early Stage	Word of Mouth, Education	Viral Phase: Startups survive on buzz and founder-led evangelism. Growth is fast but fragile because it relies on external energy (Founders) or unstable social signals.
\$10-100M Scalable	User Advocacy, Word of Mouth,	CAC Wall: Paid acquisition costs can get expensive. Companies that survive this phase successfully transition from "hype" to "proof." If they don't, CAC kills them.
\$100M-1B: Sustainable	Retention, Expansion	Unicorn Trap: This is where the "Wall" exists. Acquisition no longer outruns the churn of a large base. Survival depends on Retention + Expansion exceeding 100%.
>\$1B Durable	Expansion, Advocacy	Platform Phase: Growth comes from expansion, for example, by selling <i>more</i> to the <i>same</i> people. Acquisition becomes secondary to Portfolio value.

The revenue ranges per growth stage* are indicative, not prescriptive. They reflect common points at which system constraints shift in SaaS and AI-natives, but the underlying transition is driven by loop dominance and economics, not absolute size.

The Evolving Role of Education

Education and Community loops are present across every stage, but they do not always function as dominant constraints. Their role shifts over time; early on, they support acceleration by removing friction (Nurture). Later, they endogenize learning to scale support (Community). Contrary to popular belief, while Education and Community remain vital for efficiency, it is Retention and Expansion that ultimately determine whether growth becomes durable and compoundable.

4.3 Growth Loop Sequencing by GTM motion

Growth loops do not activate in the same order across different go-to-market motions. Although the sequencing direction is invariant, each GTM motion enters the system through a different first endogenous loop. That entry point determines how growth initially accelerates, how stability is established, and how compounding eventually emerges.

Companies fail when they apply the right loops in the wrong sequence for their GTM motion, often importing patterns that work elsewhere but violate the system's natural constraints.

4.3.1 Pro-User / PLG Motion

Natural entry point: Usage-driven acceleration

Typical sequence: Word-of-Mouth → User Advocacy → Retention → Expansion

Why this works: In PLG systems, distribution comes from usage rather than sales. Advocacy appears early because the user is also the buyer, allowing accelerative loops to activate quickly. Retention and Expansion only become dominant once sufficient user density and usage depth exist.

Failure mode: Strong early acceleration without durability. Many PLG companies stall when Expansion never becomes dominant, and growth remains velocity-driven rather than compoundable.

4.3.2 SMB / Mid Market Motion

Natural entry point: Education-driven trust

Typical sequence: Nurture → Word-of-Mouth → Retention → Expansion (limited)

Why this works: SMB buyers require education and reassurance before committing. Volume compensates for limited expansion potential, making accelerative loops effective early. Retention matters for stability, but expansion ceilings are structurally lower.

Failure mode: Growth remains input-dependent. Expansion never becomes strong enough to compound, forcing continued reliance on exogenous acceleration.

4.3.3 Enterprise Motion

Natural entry point: Economics-driven stability

Typical sequence: Retention → Expansion → User Advocacy → Word-of-Mouth

Why this works: Enterprise growth is driven by economics rather than volume. Expansion is structural—more users, teams, use cases, and value over time. Advocacy appears later, but with significantly higher intent and signal quality.

Failure mode: Logos are acquired before expansion readiness exists. The result is high logo count, weak compounding, and a stall commonly observed in the \$100–300M range.

4.4 The Wall: Structural Failure at \$100M+

Across diagnostics, we consistently observe a failure mode in which growth systems attempt to compound before stabilizing their underlying loops. We refer to this structural breakdown as The Wall.

We notice many software companies hit the Wall between \$100M and \$300M. It appears to be structural. Companies hit the wall when they attempt to scale through Acceleration long after the system requires a transition to Compounding.

The most common failure pattern is staying in motion too long. Systems optimized for acquisition delay the transition to stabilization and expansion, even as scale increases. But growth systems obey strict physical constraints: you cannot expand what you have not stabilized. When companies hit this wall, adding more salespeople or marketing spend (Exogenous input) yields diminishing returns. The system has stalled because it is optimized for the wrong physics.

What appears to be a growth problem is, in reality, a sequencing problem.

When these dynamics align: correct sequencing, dominant endogenous loops, and a closed Operating Loop, the system does not merely grow more efficiently. It undergoes a qualitative change in behavior. That transition is the subject of the next chapter.

Chapter 5. Takeoff: A Phase Transition of Growth Systems

Today's market is undergoing a structural shift that is altering the basis of competition. In growth systems, advantage is determined not by who starts first, but by whose system reaches self-reinforcement first. We refer to this as Takeoff.

Takeoff is the system-level outcome of correctly sequencing growth loops.

When accelerative loops create motion, protective loops stabilize what has been built, and compounding loops expand future capacity—in that order—feedback strength crosses a critical threshold. At this point, endogenous reinforcement begins to dominate, and reliance on exogenous inputs such as headcount, spend, or activity diminishes.

This shift represents a phase transition in the growth system. Progress no longer scales linearly with effort. Instead, growth accelerates because prior outputs increasingly fuel future inputs. The system compounds its own results, allowing progress to increase without proportional increases in investment.

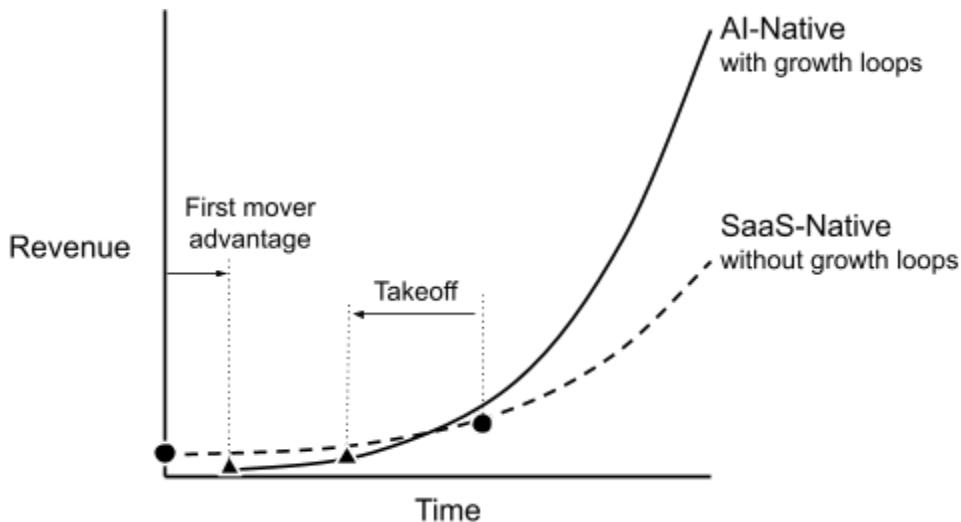
Properties of Takeoff

Systems in takeoff exhibit three defining properties that distinguish compounding advantage from linear growth.

- **Accelerative:** Progress is no longer linear or effort-bound. Cycle times collapse, iteration speeds up, and outcomes improve faster with the same—or less—input.
- **Self-reinforcing:** Outputs feed back into inputs. Each win improves the system's ability to generate the next win—learning, distribution, and execution compound.
- **Time-dominant:** Advantage accrues to those who manage their loops earlier because time in the system matters more than resources. Late entrants cannot catch up by spending more; they missed the compounding window. When time becomes the dominant variable, advantage becomes effectively irreversible.

In system terms, takeoff typically occurs when an accelerative loop, such as advocacy, feeds directly into a compounding loop, such as expansion, removing reliance on exogenous sales or marketing friction.

In linear business models, competitive advantage often depends on first-mover advantage—a temporary lead gained by starting earlier. In growth systems, that lead is fragile. The durable advantage accrues to the company that reaches Takeoff first, because late entrants cannot


recover time spent compounding inside a self-reinforcing system through additional effort alone.

Irreversible Time-Dominance vs. First-Mover Advantage

First-mover advantage is when a company gains an initial edge by being the first to enter a market or introduce a product, often capturing early customers and attention. However, it is frequently temporary as others quickly catch up or leapfrog. The advantage of a feature, or even a product, is rarely enough to provide lasting dominance.

Irreversible time-dominance, on the other hand, occurs when a company builds a self-reinforcing system that extends well beyond a product or feature. In our case, this can include compounding network effects or data loops. Each of these strengthens the time dominance itself over time. This makes it extremely hard for others to catch up because the system compounds its own advantage.

First-mover advantage concerns the timing of a product, while irreversible time-dominance concerns sustained, systemic momentum that leads to an advance in timing. Time dominance emerges at takeoff; first-mover advantage is neither necessary nor sufficient.

Figure 5.1. The Divergence of Dominance. First-mover advantage provides an early head start, but without growth loops, the trajectory quickly falls behind. Irreversible Time Dominance occurs when growth loops create a breakout velocity (solid line), making the gap mathematically impossible to close over time.

CASE STUDY

The Pivot from Product Innovation to Platform Dominance

Consider the emergence of the smartphone market. Apple's initial entry provided a first-mover advantage through hardware innovation—specifically the touch-based interface. However, while hardware features are subject to rapid commoditization, Apple's sustained time-to-market dominance resulted from shifting from a product-centric model to a systems model through iOS.

While incumbents like Nokia and Ericsson continued to compete on hardware specifications and form factors, Apple established iOS as a two-sided marketplace, triggering a compounding network effect:

- **Demand Side Scale:** Each additional iOS user expanded the addressable market, increasing the potential return on investment for third-party developers.
- **Supply Side Utility:** This scale incentivized developers to prioritize the platform for high-quality, exclusive applications, thereby increasing the ecosystem's aggregate utility.
- **The Compounding Loop:** Enhanced ecosystem utility improved user retention and organic acquisition, further expanding the developer's incentive and accelerating the cycle.

This systemic lead forced incumbents to repeatedly reset their platforms—abandoning legacy operating systems to pursue new builds (e.g., Nokia's transition to Symbian³ and subsequently to Windows Phone). These resets were structurally detrimental; they effectively nullified any compounding gains and forced incumbents to restart their network effects from a zero base.

The market eventually converged not on a specific product, but on this systemic model. Android, managed by Google, secured its market position by adopting a similar two-sided marketplace strategy rather than competing solely on device features.

Consequently, the global market reached an equilibrium dominated by the two entities that successfully established and scaled resilient compounding systems.

5.2 Leading Indicators of Takeoff

Takeoff is observable. Growth systems entering the rapids exhibit a small number of leading indicators that signal strengthening feedback loops and a shift in dominance from effort to time. These indicators appear before the revenue curve visibly bends, which is why most teams only recognize takeoff in hindsight.

- **Decoupling of Inputs and Outputs:** Growth increases without proportional increases in effort. Revenue continues to rise while customer acquisition cost (CAC) declines or remains flat, indicating that outputs are beginning to reinforce future inputs rather than relying on new spend.
- **Loop Velocity:** Feedback cycles compress. The time it takes for a customer cohort to expand shortens materially—expansion revenue appears in month three instead of month twelve—signaling faster learning, adoption, and value realization across the system.
- **Organic Lift:** Endogenous growth overtakes exogenous growth. The ratio of organic contribution (product-led usage, expansion, advocacy, community) to paid contribution is flipping, indicating that the system is increasingly generating its own demand.

When these signals appear together, optimization yields diminishing returns. The system has entered the rapids. Timing now matters more than execution, and advantage compounds with time rather than effort.

Chapter 6. Conclusion

Growth is best understood as the output of a go-to-market system. Sustainable, exponential growth does not emerge from isolated tactics or “growth hacks,” but from the deliberate design, sequencing, and reinforcement of growth loops that govern how demand is created, stabilized, and compounded over time.

Growth systems evolve under structural constraints. Accelerative loops create motion, but without stability, they remain fragile. Protective loops preserve what has been built, but cannot substitute for learning. Compounding loops expand future capacity, but only after stability has been established. Attempts to bypass this sequence—by compounding before stabilizing, or protecting before learning—produce diminishing returns and the stall commonly experienced as **The Wall**.

Whether growth compounds or leaks is determined not only by which loops exist, but by whether learning travels across the organization. The **Operating Loop**—the mechanism that closes the human feedback gap through shared language, methodology, and data—emerges as the single strongest determinant of system coherence. Without it, even well-designed loops fail to reinforce one another.

When growth loops are sequenced correctly and the operating model remains coherent, feedback strength crosses a critical threshold. Endogenous reinforcement begins to dominate, reliance on exogenous input declines, and the system undergoes a phase transition. We refer to this transition as **Takeoff**—the point at which growth decouples from proportional effort and becomes time-dominant.

From this framework, three system-level implications follow:

1. Audit for Feedback Closure

Verify whether your primary growth drivers are endogenous loops or merely exogenous inputs. A mechanism qualifies as a growth loop only if its outputs materially influence future inputs. If growth stops the moment time or money stops, you are running a campaign, not a growth system.

2. Validate the Invariant Sequence

Assess whether your system respects the invariant direction of growth:

Acceleration → Stability → Compounding.

Stability must be established before compounding is possible. Systems that attempt to scale through acceleration alone inevitably encounter leakage and stall at The Wall.

3. Align the Operating Loop

Ensure that learning flows across functions through a uniform methodology, a common language, and standardized data. The Operating Loop is not a management preference; it is a structural requirement. Without it, growth cannot compound.

Growth does not compound because organizations try harder. It compounds when systems are designed to learn, reinforce, and are sequenced correctly over time.

APPENDIX

METHODOLOGICAL POSTURE

This paper is intentionally developed and released as a working paper. Its methodological aim is to explore, test, and refine a systems framework for understanding compounding growth through feedback loops. While grounded in empirical observation and established theory, the approach prioritizes sense-making, model formation, and shared language over presenting finalized, peer-validated conclusions. The framework is therefore expected to evolve through application, critique, and continued refinement across contexts.

EMPIRICAL BASIS

The framework is grounded in more than fifty structured Go-To-Market Diagnostics (GTMDs) conducted between 2018 and 2024. These diagnostics span companies from early-stage startups (~\$4M ARR) to global enterprises exceeding \$6B ARR across B2B SaaS, PLG, enterprise software, infrastructure, fintech, cybersecurity, marketplaces, and hybrid AI-native models.

Each GTMD follows a consistent diagnostic structure—instrumenting acquisition, retention, and expansion mechanics; mapping conversion rates (CR1–CR8), velocity, and cost-to-serve; and identifying structural constraints across GTM motions. While qualitative in nature, the diagnostics are applied systematically and comparatively, enabling pattern recognition across scale, stage, and business model.

LIMITATIONS AND BOUNDARY CONDITIONS

This framework describes the structural behavior of recurring-revenue growth systems that generate growth through coordinated acquisition, retention, and expansion over time. Its predictive power is strongest once organizations have moved beyond founder-led execution into multi-role, multi-signal go-to-market systems. It is not intended to predict outcomes in the following contexts:

- Pre-revenue or pre-product systems, where growth dynamics are dominated by exploration rather than reinforcement.
- Pure B2C viral distribution without monetization, where usage can compound independently of revenue stability.
- One-off or transactional business models, where value is realized at the point of sale and feedback loops do not materially reinvest into future growth.

These boundary conditions do not represent exceptions to the framework; rather, they are contexts in which the underlying system has not yet met the criteria for compounding behavior to emerge. Once revenue becomes recurring and growth depends on retained value rather than repeated acquisition, the structural constraints described in this paper apply consistently.

GLOSSARY OF TERMS (ALPHABETICAL)

Accelerative Loop (p. 4): A growth loop designed to increase growth velocity by tightening feedback cycles and steepening the growth curve.

AI Recursive Amplifier (p. 11): The application of AI to shorten feedback cycles and improve signal inference, particularly in air-gapped environments; AI accelerates learning and adaptation but does not replace human judgment at the point of action.

Air-Gapped Loop (p. 5): A growth loop in which the feedback signal moves through people and trust rather than direct digital instrumentation, requiring inference rather than direct observation.

Compounding Outcome (p. 6): A state change in which growth increases the system's future capacity, making subsequent growth easier with less incremental effort.

Direct-Connection Loop (p. 4): A growth loop in which cause and effect are easily observed and recorded directly by software (e.g., clicks, usage, invitations).

Endogenous Reinforcement (p. 3): The ability of a growth loop to sustain or amplify itself through its own outputs once activated.

Exogenous Inputs (p. 3): External energy—such as capital, headcount, or time—required to initiate a loop or maintain externally powered activities like ads or campaigns.

Feedback Closure (p. 2): The condition in which a cycle's output materially alters the conditions for the subsequent cycle, enabling self-reinforcement.

First-Order Growth Loop (p. 13): A fundamental, system-level growth loop that directly determines how growth is created, stabilized, or compounded.

Growth Loop (p. 2): A self-reinforcing system in which outputs from growth activity feed back as inputs for future growth without requiring proportional external input.

Growth System (p. 2): The integrated set of feedback loops, actors, signals, and operating structures through which growth is produced, reinforced, or constrained over time.

Human-Led Growth (HLG) (p. 8): A growth mode operating primarily through air-gapped loops, relying on conversations, reputation, and advocacy rather than direct digital instrumentation.

Invariant Direction (p. 21): The necessary structural evolution of a growth system: Acceleration → Stability → Compounding.

Irreversible Time-Dominance (p. 27): A durable advantage gained by a system that reaches takeoff first, creating a compounding lead that cannot be closed by late entrants through capital alone.

Loop Capacity (p. 6): The amount of growth a system can sustain or compound without proportional increases in external input.

Loop Dominance (p. 22): The condition in which a specific growth loop exerts the greatest influence on a system's behavior, such that weakening it immediately slows or reverses growth.

Loop Velocity (p. 30): The speed at which a growth loop completes a full feedback cycle from action to outcome, to learning, and back into the system.

Operating Coherence (p. 19): The degree to which learning, signals, and decisions flow consistently across functions through shared language, methodology, and data.

Operating Loop (Human Closure Loop) (p. 17): The coordinating loop that ensures learning travels across functional silos, enabling system-level adaptation and preventing local optimization.

Product-Led Growth (PLG) (p. 8): A growth mode operating primarily through direct-connection loops, where user actions are immediately captured and fed back into the system.

Protective Loop (p. 4): A growth loop that prevents decay and preserves accumulated impact, such as retention.

Recursive Growth (p. 9): A second-order adaptive process that observes downstream outcomes to identify high-signal patterns and adjusts upstream decisions to amplify them.

Second-Order Growth Loop (p. 19): A derivative mechanism that amplifies or optimizes a first-order loop without altering the underlying growth physics of the system.

Takeoff (p. 27): The system-level phase transition where endogenous reinforcement dominates and growth decouples from proportional external effort.

Wall, The (p. 26): A structural failure—often between \$100M and \$300M ARR—caused by attempting to scale through acceleration before the system has stabilized or transitioned to compounding.

INDEX OF TABLES AND FIGURES

Figure 1. The Fundamental Growth Loop.

Illustrates the transformation of system inputs into outputs that feed back into the system to influence future growth without proportional external effort.

Figure 3.1. The Five First-Order Growth Loops mapped to the Customer Journey.

A spatial mapping of Word-of-Mouth, Education, Advocacy, Retention, and Expansion across the bowtie customer journey.

Figure 3.2. The Operating Loop as a System Multiplier.

Empirical analysis of 50+ GTM diagnostics showing the Operating Loop as the #1 determinant of performance (Enabler vs. Inhibitor).

Table 4.1. Dominant Growth Loops by Growth Stage

Illustrates which growth loops dominate at different stages of company scale, explaining why growth accelerates, stalls, or compounds as systems evolve.

Figure 5.1. The Divergence of Dominance.

Visualizes the "Takeoff" phase transition where growth loops create breakout velocity, leading to Irreversible Time-Dominance over linear models.

REFERENCES AND INTELLECTUAL LINEAGE

The works listed below represent intellectual lineages and foundational traditions that inform the framework presented in this paper. They are cited as sources of conceptual influence rather than as objects of direct empirical extension or formal theoretical comparison.

- Ref 1.** Agrawal, A., Gans, J., & Goldfarb, A. (2022). *Prediction Machines: The Simple Economics of Artificial Intelligence* (2nd ed.). Harvard Business Review Press.
- Ref 2.** Agent-Based Computational Economics (ABCE) Literature. Research demonstrating how agent interactions and reinforcement processes produce emergent growth patterns in complex systems.
- Ref 3.** Auqui-Cáceres, M. V. (2023). "Revitalizing double-loop learning in organizational contexts." *The Learning Organization*.
- Ref 4.** Blank, S. (2013). *The Four Steps to the Epiphany: Successful Strategies for Products that Win*. K&S Ranch.
- Ref 5.** Christensen, C. M. (1997). *The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail*. Harvard Business Review Press.
- Ref 6.** Complexity Theory and Organizations Research. Studies describe organizations as complex adaptive systems characterized by ongoing feedback and non-linear dynamics.
- Ref 7.** Endogenous Growth Literature. Models suggesting "more ideas \rightarrow more output \rightarrow more ideas" drive accelerating growth through feedback loops.
- Ref 8.** Forrester, J. W. (1961). *Industrial Dynamics*. MIT Press.
- Ref 9.** Forrester, J. W. (1975). *Collected Papers of Jay W. Forrester*. Wright-Allen Press. (Includes research on system archetypes and organizational "attractiveness principles").
- Ref 10.** Hoffman, R., & Yeh, C. (2018). *Blitzscaling: The Lightning-Fast Path to Building Massively Valuable Companies*. Currency.
- Ref 11.** Iansiti, M., & Lakhani, K. R. (2020). *Competing in the Age of AI*. Harvard Business Review Press.
- Ref 12.** Katsamakas, E., & Pavlov, O. (2020). "AI and Business Model Innovation: Leveraging the AI Feedback Loops." *Journal of Business Models*.
- Ref 13.** Lee, K.-F. (2018). *AI Superpowers: China, Silicon Valley, and the New World Order*. Houghton Mifflin Harcourt.
- Ref 14.** Meadows, D. H. (2008). *Thinking in Systems: A Primer*. Chelsea Green Publishing.
- Ref 15.** Moore, G. A. (1991). *Crossing the Chasm*. Harper Business.
- Ref 16.** Nunes, P., & Breene, T. (2011). *Jumping the S-Curve*. Harvard Business Review Press.
- Ref 17.** OECD (2024). "The Impact of Artificial Intelligence on Productivity, Distribution and Growth." Policy research on self-improvement loops.

- Ref 18.** Pussinen, P. (2023). "Exploring digital platform growth through feedback loops." *Systems Research and Behavioral Science*.
- Ref 19.** Ramaswamy, S. (2023). *Organize for AI*. (Focuses on operational structures required for AI feedback value).
- Ref 20.** Ries, E. (2011). *The Lean Startup*. Crown Business.
- Ref 21.** Ritala, P. (2024). "Developing industrial AI capabilities: An organizational learning perspective." *Journal of Business Research*.
- Ref 22.** Senge, P. M. (1990). *The Fifth Discipline*. Doubleday.
- Ref 23.** Sterman, J. D. (2000). *Business Dynamics: Systems Thinking and Modeling for a Complex World*. McGraw-Hill Education.
- Ref 24.** Stroh, D. P. (2015). *Systems Thinking for Social Change*. Chelsea Green Publishing.
- Ref 25.** Thomke, S. (2020). *Experimentation Works*. Harvard Business Review Press.
- Ref 26.** van der Kooij, J. (2024). *Revenue Architecture*. Winning by Design.
- Ref 27.** West, G. (2017). *Scale: The Universal Laws of Growth*. Penguin Press.
- Ref 28.** White, K., et al. (2005). "A generative model for feedback networks." *Physical Review E*.
- Ref 29.** Wilson, H. J., & Daugherty, P. R. (2018). *Human + Machine*. Harvard Business Review Press.

About the Winning by Design Growth Institute: The Growth Institute is the research and standards body of Winning by Design, focused on the applied study and synthesis of revenue architecture and growth systems. It integrates comparative field diagnostics with foundational systems theory to develop shared frameworks and language for designing, diagnosing, and governing compounding growth systems. Through its Working Paper series, the Institute serves as a think tank for revenue leaders navigating the transition from effort-driven growth to increasingly self-reinforcing systems.